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mm , 
*""! An   attempt to  characterize  the   physical   realizability  of an abstract 
.". mapping process  in terms of the Turing computability of an associated 
LM numerical  function  is described.    Such an approach rests heavily on the 

validity of Church's Thesis  for physical  systems capable  of computing 
• numerical functions. This means in effect that one must investigate in 

what manner Church's Thesis can be converted into an assertion con- 
cerning   the   nonexistence   of   a   certain   class   of   physical    processes 

J (namely, those processes which are capable of calculating the values of 
• numerical   functions   which   are   not  Turing-computable),      A formulation 
1                     which may be plausible is suggested, and it is then shown that the truth 

of Church's Thesis in this form is closely connected with the "effective- .    .    , 
V ness" of theoretical descriptions of physical systems.    It is shown that 
• ' the   falsity  of this  form of Church's Thesis is related to a fundamental    j.— >      ■■,,■.. 

incompleteness  in the possibility of describing physical  systems, much — 
like the incompleteness which Godel showed to be inherent in axiomati- 

} c zations of elementary arithmetic.    Various implications of these matters    APR \ v   'QG3 
are briefly discussed. 

I. General Introduction.   In previous work (Rosen, 1958a, 1958b,     '      -iciiJ A 
1959) we have attempted to develop an abstract approach to bio- I .ol« r 
logical systems, in which these systems are represented by fami- 
lies of mappings satisfying certain natural conditions. More re- 
cently, we have shown (Rosen, 1962) that the properties of the set 
of all such systems depend very strictly on the category from which 
we are allowed to choose the mappings which enter into our repre- 
sentation. Each category may, in fact, be said to give rise to its 
own "abstract biology." 

'This research was supported by the United States Air Force through 
the Air Force Office of Scientific Research of the Air Research and 
Development Command, under Contract No. AF 49(638)-917. 
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376 ROBERT ROSEN 

The manner in which such "abstract biologies" depend on the 
structure of the underlying category is an interesting problem in 
itself. The question also arises, however, as to how to character- 
ize the category giving rise to an abstract biology which most 
nearly resembles our own organic world in its behavior. One ap- 
proach to this problem, which seems most natural, is to attempt 
to restrict ourselves only to those mappings which can in some 
sense be said to be "physically realizable." That is, we should 
try to find a means of characterizing those abstract mappings which 
can be mirrored by the action of a real physical system. It is clear 
that in an arbitrary category selected at random we will find a 
large number of mappings which cannot correspond to actual phys- 
ical processes, and which will hence give rise to large numbers of 
systems which satisfy the axioms for (JI,ft)-systems, but which are 
not capable of actual existence. The properties of such systems 
are of no interest for purely biological studies, and in the absence 
of a means of distinguishing these systems from the "realizable" 
ones we may easily be misled by their behavior. 

The present paper was developed out of an attempt to find a 
criterion which will allow us to characterize the "realizable" 
mappings in a category, and thus allow us to restrict ourselves at 
the outset to the subcategory of "realizable" mappings. We will 
then be sure that all conclusions derivable from the structure of 
the subcategory of realizable mappings will be of direct applica- 
bility to biological problems, and we may even hope to determine 
the relevant structural facts concerning such a category in a rela- 
tively direct manner. 

The most natural approach to take seems to be the following: let 
f:A—*B be an arbitrary mapping. If f is to be physically realiz- 
able, it is no restriction to take .4 and 6 to be countable sets. Let 
Z denote the set of integers, and let definite bijective mappings 
qp: Z —» A, ijß: B —* Z be chosen. Then we can write the following 
diagram: 

f 
A —► ß 

z-^» z 
f 

(1) 
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Here J: Z—♦ Z is the composite mapping i/»/cp. If the mapping f is 
physically realizable, and if the mappings cp, ijj are in any sense 
"effective" (i.e., if we can "code" the integers into the objects 
A which serve as inputs to an actual physical realization of /, and 
"decode" them from 6), then we can regard the physical process 
corresponding to the composite mapping ^r/cp as a computing ma- 
chine, and the numerical mapping 7 should therefore be a recursive 
or computable function. Conversely, it seems natural to try to turn 
this argument around, and assert that a mapping / should be physi- 
cally realizable if and only if there exist "effective" mappings 
cp, i/> such that the induced mapping / = iA/op is a recursive func- 
tion. We can then argue that if / were physically realizable and / 
were not recursive, we would be in the position that there would 
exist a physical process (namely the one corresponding to the 
composite map i/^/cp) which would effectively calculate the values 
of a nonrecursive function. This immediately seems to contradict 
Church's Thesis, which asserts precisely that the concepts of 
effective calculability and recursiveness are coextensive. 

However, further reflection will reveal that the invoking of 
Church's Thesis to characterize a mapping ^as^ realizable in terms 
of the recursiveness of the induced mapping / is not immediately 
justifiable. This is because Church's Thesis, as commonly enun- 
ciated, has no real physical content, although one is often read 
into it indirectly. In order to apply an argument of this type to 
problems of realizability, it is necessary to restate Church's The- 
sis as a physical proposition about the nonexistence of a certain 
class of physical processes. If we do this, we shall find that 
the physical form of Church's Thesis will be true only if the total- 
ity of physical laws governing the change of state of physical 
systems satisfies rather strong conditions. We shall be concerned 
in the present paper with describing the conditions which must 
hold in order for Church's Thesis to be a true statement. 

The essence of our approach to this question is the following: 
given any physical process / which can act as a computing ma- 
chine in the sense of the diagram (1), we shall show that we can 
in principle determine the algorithm (i.e., the "program" which the 
process is using to compute the values of J) from the physical 
laws which govern the physical behavior of the process /, if the 
description of the behavior of f in terms of the laws of physics is 
sufficiently sharp.   If there can exist systems for which the requi- 
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site sharpness cannot be attained, then Church's Thesis as a 
physical proposition need not be true, and hence a fortiori we 
cannot hope to characterize realizability in these terms. 

It might be of some interest to point out that the essence of our 
approach to tLia problem, as described in the preceding paragraph, 
is the reverse of the type of argument which is employed in Rela- 
tional Biology. We generally use relational arguments to infer a 
physical structure (or more accurately, a class of physical struc- 
tures which are in some sense equivalent to each other) from a 
relational structure, i.e., from some kind of "program." Our in- 
vestigation of the relation of Church's Thesis to questions of 
realizability involves the attempt to deduce the "program" em- 
ployed in a physical process from the details of its physical struc- 
ture, and is therefore primarily (cf. Rashevsky, 1954) of a Metric 
nature. Thus these remarks may be pertinent to the clarification 
of the Metric and Relational aspects of the structure of science 
(cf. Rashevsky, loc. cü.; Rosen, 1961). 

II. Preliminary Remarks, The conjecture that every numerical 
function which is in any sense '''effectively calculable" must also 
be recursive or computable (in the sense of Turing) is called 
Church's Thesis (Church, 1936; Kleene, 1952). As we have pointed 
out above, we shall find that apart from its purely logical connota- 
tions, this Thesis may be interpreted as asserting that a certain 
class of physical processes (namely, those capable of calculating 
the values of a function which is not Turing-computable) cannot 
exist. With this interpretation. Church's Thesis may legitimately 
be considered as a proposition in pure physics. The physical 
aspect of Church's Thesis is in fact implicit in many discussions 
of computability (cf., for example, the rhetorical question of Davis 
(1958): "...how can we ever exclude the possibility of our being 
presented someday (perhaps by some extra-terrestrial visitor) with 
a device... that "computes" a non-computable function?"). De- 
spite this, no explicit discussion of the consequences which arise 
from a physical interpretation of Church's Thesis has been forth- 
coming, as far as the author is aware. 

Church's Thesis remains a conjecture in Mathematical Logic 
because the notion of effective calculability is an informal and 
qualitative one, and it is not possible to prove formally that a 
quantitative  concept,  such as recursiveness, or Turing-computa- 



CHURCH'S THESIS AND REALIZABILITY 379 

bility, is broad enough to include all the aspects which could 
appropriately be included in the intuitive term "effectively calcu- 
lable." If we attempt to interpret Church's Thesis as a physical 
proposition, however, it becomes necessary to give a physical 
characterization of what we will mean in an operational sense by 
the term "effectively calculable." When we do this. Church's 
Thesis will, as a physical proposition, take on a truth value, de- 
pending on two things: the operational interpretation we give to 
the term "effectively calculable," and the rules or laws we sup- 
pose to hold in the physical world. It may not be out of place to 
remark that this type of procedure (i.e., the interpretation of purely 
mathematical assertions in physical terms) is a well-established 
and often highly fruitful practice. It was precisely an investigation 
of this type, for example, which led from the dissertation of Rie- 
mann (1892), which dealt with purely geometric problems, to the 
development of General Relativity. 

Therefore, we shall proceed in the next section to provide an 
operational interpretation of "effective calculability." In Section 
IV we review briefly some well-known aspects concerning the 
description of physical processes, and in Section V we shall show 
that, contingent upon the assumption of certain hypotheses con- 
cerning the "completeness" of physical descriptions, we can 
actually prove that Church's Thesis follows from the laws of 
physics. We shall conclude with a brief discussion of this result, 
and the mention of some of its implications for physical and bio- 
logical systems. 

We shall now introduce some terminology which will be used in 
the sequel. We shall call any physical entity or construct which 
is capable of calculating the values of a numerical function (in a 
sense to be made precise below) a calculating agent (or simply 
agent). The various inputs and outputs to such an agent will be 
called objects. The composite structure consisting of an agent and 
an appropriate input object will be called a calculating system. 

III. A Physical Characterization of Effective Calculability, In 
this section, we undertake to specify the conditions which a phys- 
ical entity / must satisfy in order to be said to operate as a calcu- 
lating agent. We shall motivate our discussion by a preliminary 
examination of the special class  of agents  known as  Turing ma- 
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chines, when these are considered as real physical mechanisms 
rather than as gedankenmaschinen. This can always be done; 
Turing himself (1937) pointed out that he considered only comput- 
ing devices that could in principle be physically realized. 

Parenthetically, this seems to be an appropriate place to remark 
that by the phrase "in principle" we do not mean "practicably." 
To dispel any possibility of misunderstanding, we may point out 
that there exist in the literature (cf. for example Bremermann, 
1962) arguments which show that the laws of physics place certain 
upper limits on practicability. For example, it can be shown that 
certain simply statable combinatorial problems, which are finite and 
hence "trivially" solvable by search through all possibilities, could 
not in fact have been solved by a device as large as the earth operat- 
ing at theoretically maximum rate for a time equal to the age of the 
earth. Arguments of this type have no bearing upon the scope and 
intent of our present discussion; this should be kept in mind as we 
proceed, especially in Section V. 

Let us then suppose than an abstract Turing machine T is given, 
specified by the alphabet a0 (the empty symbol), a,, ..., an and 
the set of internal configurations q0, ?,, ..., qm. The first step 
in the transition from the abstract machine f to a physical realiza- 
tion of 7* is to represent the symbols of the alphabet by a set of 
n -•- 1 mutually distinguishable physical objects, which will be ca- 
pable of serving as inputs to the machine. (In most contexts, it is 
customary to refer to an input to a Turing machine as a sequence 
of symbols of the alphabet. For our purposes it is convenient to 
regard the symbols themselves as inputs, which will henceforth be 
referred to as elementary inputs; sequences of such symbols will 
be called compound inputs). 

In the realization envisioned by Turing, the physical objects 
chosen to represent the abstract elementary inputs are certain 
distinguished black marks on a tape. But it is clear that we are 
at liberty to use any family A of n + 1 mutually distinguishable 
physical objects as elementary inputs to an appropriately con- 
structed machine. We remark explicitly that we here use the term 
"physical object" in a wide sense; for example, we may consider 
different electromagnetic impulses as constituting legitimate in- 
puts to a Turing machine, and hence as physical objects. 

The abstract Turing machine T performs elementary acts by 
transforming the various elementary inputs aj into new symbols, 
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depending on the initial internal configuration of the machine. In 
Turing's original formulation, each symbol of the alphabet is to 
be transformed into another symbol of the same alphabet. However, 
a moment's reflection will show that this restriction is not essen- 
tial; that is, there is no necessity that what we may call the out- 
put alphabet of the machine T must consist of the same symbols 
as the original input alphabet. All that is necessary here is that 
the set of objects into which a Turing machine can transform the 
various elementary inputs shall consist of n + 1 mutually distin- 
guishable objects, and in fact any set ß of n + 1 such objects can 
serve as the output alphabet for an appropriately constructed Turing 
machine, defined on an appropriately selected set A of elementary 
inputs. 

The interesting aspect of the Turing machine is not what it 
does to elementary inputs, but what it does to compound inputs. 
The well-known behavior of abstract Turing machines on such 
inputs may be stated formally in the following manner: for each 
internal state ql of the machine, there is an associated mapping 
<l»., the domain of which is the set of sequences of symbols of 
the input alphabet Ay and the range of which is the set of se- 
quences of symbols of the output alphabet B. That is, <l»;. maps 
the free semigroup ^(.-1), generated by the symbols of A, into 
the free semigroup 5(B) generated by the symbols of B, In this 
manner, we have made it possible for a given Turing machine T 
to he defined on an infinite set of inputs (namely G(Ä)) instead 
of only on the finite set A. 

We come now to the essential point in our discussion of the 
Turing machine. In order for such a machine to carry out numerical 
computations, it is obviously necessary that some effective means 
be at hand whereby the various compound inputs and outputs of 
the machine may be unambiguously associated with integers. In 
greater detail, it is necessary that, given any integer n, we shall 
be able to construct the word in G{A) which is to correspond to n; 
moreover, to each word in G{B) we must be able to associate the 
unique integer which is to correspond to this word. That is, we 
must be given in advance and in an effective manner the following 
pair of (1, 1) mappings: 

qp:Z—•ff(/l) 

t:G{B)—»Z 
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where Z denotes the set of integers. The operation of the Turing 
machine T as a computer of numerical functions may then be sym- 
bolized by the following diagram of mappings: 

'1 
♦/ 

Here 4>; is the numerical function calculated by the machine T 
when the initial configuration of T is g.; explicitly, we have *(n) = 
i/f «t>y cp(n), whenever the right-hand side of this equation is defined. 

Thus, we see that a Turing machine JT, considered as a physical 
agent, is specified as a calculating machine by the following data: 

1, A physical agent <!>/ (we shall denote the physical structure 
and the associated mapping by the same symbol) which trans- 
forms the objects of a certain infinite set G(A) into the 
objects of another infinite set G(ß). 

•2. A prescribed effective mapping cp : Z *G{A). 
3. A similar mapping i^ : G (ß) »Z. 

These data are in fact sufficient to characterize the agent <I>y as 
capable of evaluating a numerical function. It is immediate that 
every numerical function (such as *,-) which is induced in the 
above manner is Turing-computable. Moreover, it is readily veri- 
fied that, given a Turing-computable numerical function, it is pos- 
sible to find a physical agent and mappings cp, i/r, such that the 
given function is induced in the above manner by this agent. 

We may now generalize the above consideration. Intuitively, we 
recognize that in order for any physical construct or entity to 
function as a calculating agent, it is necessary to be able to some- 
how "code" the set of integers into the inputs and outputs of 
this entity. That is, the data 2 and 3 characterizing the Turing 
machine cannot be essentially generalized. However, we may ob- 
serve the following: in the case of the Turing machine, the ef- 
fectiveness of the mappings cp, i^ is a consequence of the fact 
that the sets G{A) and G(ß) of inputs and outputs, respectively, 
are finitely generated free semigroups. This consideration sug- 
gests that we may generalize the Turing machine by discarding the 
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assumption that the sets of input and output objects of a proposed 
calculating agent bear this type of algebraic structure, and retain- 
ing only the hypothesis that the maps cp, V are effective. 

We are thus led to the following characterization of the most 
general calculating agent: A physical entity / will be called a 
calculating agent if and only if the following conditions hold: 

4. There exist two (not necessartiy distinct) countably infi- 
nite sets, denoted by d{f) (the domain of f) and r(/) (the 
range of f), such that the objects in d{f) serve as inputs to 
/ and the objects in r{f) serve as outputs of /. 

5. There exists a prescribed effective mapping flp : Z—*d(f). 
6. There exists a similar mapping 0 : r(f)—»Z. 

Those data are now necessary and sufficient to allow us to con- 
struct a diagram of mappings analogous to that characterizing the 
behavior of the Turing machine: 

/ 
d{f) *r(f) 

I       1^ qp | [* (2) 

z ——► z 

7 
Here,  as  usual, / is the numerical function induced by the above 
data; / = (/»/Cp. 

It is readily seen that any numerical function induced by an 
agent / satisfying the data 4 to 6 above is in any intuitive sense 
effectively calculable. Conversely if / is any numerical function 
whose values can be calculated by any sort of physical process 
whatsoever, then this process must at the very least involve the 
operation of an agent / satisfying 4 to 6, such that a diagram of 
the above type can be constructed. That is, whatever else may be 
involved, the bare minimum requirements of an effective incoding 
of integers, the operation of the agent, and the effective decoding 
of the outputs of the agent must be satisfied. This argument leads 
us to the following rigorous definition: a numerical function 
f:Z—*Z will be called physically effectively calculable if and 
only if there exists an agent / and effective mappings (f, i/f satisfy- 
ing 4 to 6 above, such that the function / is induced via diagram 
(2) by the operation of /. 
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It should be noted that we have deliberately restricted our atten- 
tion to agents which receive real physical inputs. There exist 
other types of devices, which intuitively may be considered as 
capable of calculating numerical functions, but which do not re- 
quire the integers to be coded into any real input objects. As an 
illuminating example of such a device, we can consider the follow- 
ing construction, which was suggested to the author by Professor 
G. Y. Rainich: Let us suppose that a fragment of radioactive ma- 
terial is placed within an insulated box. The box is provided with 
an aperture which determines a certain solid angle d with the radio- 
active material as vertex. Let us suppose the material in ques- 
tion to be chosen so that, on the average, one particle per minute 
(say) is emitted within the solid angle Ö. We further suppose that 
there is a scintillation screen set at a fixed distance from the 
aperture, which is divided into halves, with some convention es- 
tablished in advance to insure that no ambiguity results from a 
particle striking the screen on the line of division. Finally, we 
suppose that the aperture is provided with a door which is opened 
for an instant once each minute by a clockwork mechanism. We 
define a numerical function f as follows: ^(n) = 0 if no scintilla- 
tion appears on the screen when the aperture is opened at the nth 
minute; /(n) = 1 if a scintillation appears in the left half of the 
observing screen; f(n) = 2 if the scintillation appears in the right 
half of the screen. To avoid the trivial objection that this func- 
tion ultimately becomes identically zero, we suppose that the radio- 
active material is replaced at intervals by a fresh sample; for in- 
stance, whenever its half life is exceeded. Devices of this type 
are not calculating agents, in the sense of our present discussion, 
and hence are excluded from our subsequent considerations. 

IV. The Description of Physical Systems. We must now discuss 
briefly the manner in which the physicist mirrors the activity of 
real physical systems or processes by purely mathematical means. 
In physics, a system or process may be said to be described if 
there exists an algorithm which enables us to compute, from a 
suitable set of data characterizing the state of the system at some 
initial time of reference, a (maximal) amount of information about 
the state of the system at any later time. Algorithms of this type 
are referred to in physics as laws. We need not dwell here on how 
such   algorithms are constructed,  except to remark that they are 
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obtained by generalizing, in some sense, the results of suitable 
empirical observations. We should further remark that not all the 
statements which are presently called "physical laws" are of 
this algorithmic type (e.g., the laws of thermodynamics). In what 
follows, we restrict our attention entirely to those physical laws 
which enable us to determine future states of a system from some 
initial state; clearly the laws of thermodynamics and similar state- 
ments do not fall into this category. 

There exist, even at the present time, certain classes of physi- 
cal processes for which the physicist feels that he has already 
succeeded in formulating a set of algorithms which are optimal, in 
the sense that any system belonging to the class in question can 
be described in terms of these algorithms. Thus, for example, 
von Neumann (1950) says of the quantum-mechanical formalism: 
"... the theory, so far as it deals with individual electrons or with 
electron shells of atoms or molecules, is entirely successful, as 
it is also whenever it deals with electrostatic forces and with 
electromagnetic processes connected with the production, trans- 
mission, and transformation of light". A similar assertion may be 
made with regard to the efficacy of the Hamiltonian formulation of 
Newtonian mechanics, with regard to the description of macro- 
scopic mechanical systems moving slowly compared with the ve- 
locity of light. 

On the other hand, there are also many classes of physical 
processes for which suitable algorithms have not as yet been forth- 
coming. This of course does not imply that such algorithms can- 
not be constructed. In fact, the structure of theoretical physics 
is often asserted to contain the following two hypotheses, which 
imply that just the contrary is true: 

Hypothesis I. Every possible physical process admits of a 
description; i.e., a definite mathematical procedure whereby 
all future states of the process may be calculated from 
suitable initial data. 

Hypothesis II. Only a finite set of algorithms (i.e., laws) 
is required in order to provide a description of every pos- 
sible physical phenomenon. 

The first of these hypotheses may be regarded as asserting that 
physical science is in principle completely effective with respect 
to its ability to describe the external world.    With regard to the 
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second hypothesis, we may point out that many physicists (includ- 
ing Einstein) have asserted a much stronger hypothesis; namely, 
that a single principle would be found from which a description of 
every possible physical system could be derived. One of the 
consequences of these hypotheses, which will be used below, is 
that they allow us to meaningfully use the phrase, the laws of 
physics, even though physics is at present far from a closed sub- 
ject. 

It must of course be remarked that there are many physicists who 
will deny either Hypothesis I or Hypothesis II. For example, Böhm 
(1957) has explicitly put forward the hypothesis that a countable 
infinity of different algorithms is required for the description of all 
physical processes, thereby denying Hypothesis II. However, 
Böhm accepts Hypothesis I. Böhm points out, however {ibid., p. 
84 et seq.) that many quantum physicists will deny Hypothesis I, 
as well, citing such processes as the decay of a single radioactive 
nucleus as an example of a physical process for which it is claimed 
that no description can ever be found. We shall analyze these views 
somewhat further in Section VI below, and retain Hypotheses I and 
// throughout the ensuing argument. 

It may not be out of place to remark at this point that Hypoth- 
eses I and // above bear a certain resemblance to Hubert's program 
for the formalization of mathematics. This may be seen by replac- 
ing the term law of physics by the term postulate, and replacing 
description of a physical system by theorem. This similarity be- 
tween the assumptions implicit in the structure of theoretical 
physics and the Hilbert program is perhaps to be expected in view 
of Hilbert's deep familiarity with the physical sciences and his 
views on the origin of the basic concepts of mathematics. At any 
rate, in view of the subseqi: nt fate of the Hilbert program, it may 
be well to bear this analogy in mind as we proceed with our dis- 
cussion. 

V. The Turing-Computability of the Numerical Function Induced 
by an Arbitrary Calculating Agent, We now proceed to the proof of 
the main result of the paper; namely, given Hypotheses I and //, 
every physically effectively calculable function is Turing-com- 
putable. We shall show that, given an arbitrary agent, a procedure 
whereby its associated numerical function can be Turing-computed 
may be derived from the physical description of the agent in ques- 
tion. 
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Let us suppose that a physical entity f is capable of acting as 
a calculating agent. According to our discussion in Section II 
above, this means that we must be able to construct the diagram 
of mappings 

f 
d(f) "(f) 

I       I 
- Z 

where the properties of the various symbols are as described in 
Section II. Since cp is effective, we can by definition identify for 
each integer neZ a. definite and unique object <p{n)B d(f). More- 
over, both / and cp(n) are definite physical entities, and hence, by 
Hypothesis I of Section III, they admit of a physical description. 
In fact, we can see intuitively that the states of botti / and cp(n) 
will remain constant in time when these objects are considered in 
isolation. 

Next, let us suppose that at some initial time to the object (p(n) 
is supplied to the agent f as an input. We thus arrive at what we 
have agreed earlier to call a calculating system. Intuitively, we 
see that the effect of the calculating system is to transform in 
some manner the original input object qp(n) into a definite output 
object in r(/). That is, the state of the calculating system, which 
we may denote by / 9 f fn), is not constant in time. 

Invoking Hypothesis I for the system /$<? (n)v we see that we 
can effectively describe this system; i.e., there exists a definite 
(mathematical) procedure whereby we may determine the state of 
the system at any future time when we are given a suitable set of 
data concerning the state of the system at time to. In particular, 
we can determine whether or not, at some time subsequent to <o, 
the process ceases (i.e., its state becomes constant). The ces- 
sation of the calculating process intuitively corresponds to the 
termination of the calculation; physically this means that the sys- 
tem now consists of two independent stable parts. One of these 
parts is by definition an object in r(f), which we may denote by 
/[cp(n)]; the other part is the agent / with which we started (per- 
haps in a different state, corresponding to what in the Turing ma- 
chine is a change in internal configuration). Moreover, these parts 
are identifiable from the description of the final stable state of 
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the calculating system /'Bqp(n); in particular, we can identify the 
object /[cp(n)]. 

It might be objected at this point that the determination of 
whether the state of the system / ® cp (n) ultimately becomes con- 
stant or not is not necessarily an effective process. However, we 
are at present dealing by hypothesis with the equations of motion 
of a physical system, which are quite highly determined, so that 
in practice it is quite possible to tell whether the cessation of in- 
teraction is permanent or not. One has an analog of this in the 
quite trivial problem of asking how one can be sure that a 4 will 
never appear in the decimal expansion of 1/3. 

Once we have arrived at the object /[qp(n)]£ r(/), we can by the 
effectiveness of the mapping ^ associate this object with a unique 
integer. This integer, by definition, is /(n). Of course, if the 
calculating system / ® cp (n) never attains a constant state, then 
/ (n) is left undefined. 

We must now show how the various physical descriptions we 
have invoked above may be used to construct a Turing machine 
which will compute 71 It will be helpful to consider first a particu- 
lar example, which will clearly illustrate the procedure to be fol- 
lowed in the most general situation. Accordingly, let us for the 
time being suppose that the agent / under consideration is com- 
pletely describable by the laws of classical mechanics, which as 
we remarked above are regarded by physicists as being, in a 
sense, optimal. We suppose once more that at time I « £0, a par- 
ticular object cp(n) e (f (/) is supplied to / as input. According to 
the formalism of classical mechanics (see Joos, 1950, for a con- 
cise exposition), the system / S cp (n) is completely described by 
its Hamiltonian function H{p1, ..., pk, ?,, ..., gh), where the qi 

are appropriate generalized co-ordinates and the p. are the as- 
sociated momenta. The change of state of this system with time 
is given by the set of 2k simultaneous differential equations 

*""*«l        i-1 k 
dqi      dtf 
.dt   ' dpi 

subject to the initial conditions obtained by specifying the 2k 
numbers \pi(jt0)i qi(t0)\. These equations are called the equations 
of motion of the system. 
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The equations of motion, whether or not they are directly solv- 
able in closed form, can in principle always be solved with the 
assistance of the ordinary techniques of numerical computation. 
For example, the 2k differential equations may, by the use of 
standard relaxation methods, be reduced to difference equations, 
and the solutions of these difference equations may be made to ap- 
proximate to the solutions of the actual equations of motion to any 
accuracy desired by choosing a suitably fine mesh. If we approxi- 
mate to the true solutions of the equations of motion sufficiently 
closely, there will be no physically detectable difference between 
the behavior of the system as predicted by the approximate solu- 
tion and the actually observed behavior of the system. 

We now observe that these numerical techniques may be per- 
formed on a properly programmed digital computer. Since it is 
known that every such computer can be imitated by an appropriate 
Turing machine, it is already possible for us to conclude that the 
numerical function / induced by the agent / under consideration 
must be Turing-computable. 

More specifically, we see that the power of the equations of 
motion is to enable us to mirror the physical activity of the calcu- 
lating system /®cp(n) by a series of strictly mathematical, and, 
in fact, strictly numerical procedures. Since in the last analysis 
it is this activity which defines the numerical function /, we have 
thereby succeeded in associating with / a series of processes 
which can be carried out on a suitable Turing machine, and which 
will actually compute /. We can now write down, in a completely 
explicit fashion, the various steps involved in the transition from 
the agent / to an appropriate Turing machine, as follows: 

1. Given an integer n, we determine the object cp(n). 
2. To each object (p(n), we associate the equations of motion 

of the system / ® cp (n). This enables us to compute the 
state of this system at any time t > t0t given appropriate 
information about / and <p(n) at time t0. 

3. The equations of motion are next transformed into a suit- 
able numerical form, so that the transformed equations are 
(a) solvable on a suitable digital computer, and (b) suf- 
ficiently close to the actual solution so that no detectable 
physical consequence results from using the approximation. 

4. The state of the system / ® qp (n) at a convenient sequence 
of times (say tQ + I, tQ + 2, ,..) is determined by means of 



390 ROBERT ROSEN 

the approximation selected in (3) above, in order to ascer- 
tain whether or not the state of / ® 9(n) ultimately becomes 
constant. 

5. If we find that, subsequent to a certain time to + N, the 
system /®cp(n) maintains a constant state, then we can 
obtain a description of that state by substituting to + N 
into the Hamiltonian of the system. 

6. The description of the constant state obtained in the pre- 
ceding step is by hypothesis directly decomposable into a 
description of f and a description of the appropriate object 
/[<p(n)]e r(f). In other words, this constant state uniquely 
and effectively determines the object /[cp (n)]. 

7. By means of the mapping i/r, we can associate a unique in- 
teger with the object /[cf (n)]. This integer is by definition 
Tin). 

We can represent this procedure schematically, in the following 
manner: suppose that f is a Turing machine which can carry out 
the computations specified by steps 3 and 4 above. As we saw in 
Section II, T induces a mapping $ from the free semigroup G (A) 
generated by the alphabet of the machine into itself. Since T is 
already a Turing machine, we are by hypothesis given appropriate 
mappings cp': Z—*G{A), t{/':G(A)—»Z (in fact, in this case we 
have 0' = (cp')~1). Then we can construct the following diagram of 
mappings: 

 *G{A) 

where the mappings p and 0 can obviously be defined effectively in 
such a manner as to render the entire diagram commutative. The 
computability of / is now obvious, using the definition f= i/r'<t> qp'. 

We now return to a consideration of the general calculating agent 
f. We first remark that the special example which we have just 
considered in detail is in fact perfectly typical of how the laws 
of  physics,   and   the description  of particular  physical systems 
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which can be derived from them, can be used to construct specific 
algorithms whereby associated numerical functions can be com- 
puted in the sense of Turing. It may be pointed out that all the 
laws of physics thus far discovered have taken the form of dif- 
ferential equations, and for these the discussion supplied above 
may be carried over almost verbatim. But even if it should be the 
case that sometime in the future a physical law should be dis- 
covered which is not of this form, it is nevertheless clear that 
only minor details of the discussion will be altered. 

We may thus sum of the results of this section in the following 
form: If Hypotheses I and // are correct, then it follows (at least 
informally) that Church's Thesis, considered as a physical propo- 
sition, is a true statement. (In fact we have thus far only utilized 
Hypothesis /, but since Hypothesis 11 implies Hypothesis /, we can 
repeat the above arguments on the basis of Hypothesis II as well). 
Contrapositively, we have shown that if the physical form of 
Church's Thesis is false, then Hypothesis I and // cannot both be 
true, and may very well both be false. 

VI. Discussion. Before proceeding to investigate the conse- 
quences of the falsity of Church's Thesis, let us consider briefly 
the various alternatives to Hypotheses I and //. We have con- 
sidered these hypotheses separately because, as we have seen in 
Section IV, it is possible to deny Hypothesis II alone, or to deny 
both hypotheses. 

The denial of Hypothesis II is equivalent to asserting that phys- 
ics is essentially incomplete, in much the same sense that Gödel 
showed arithmetic to be incomplete. That is, given any finite set 
of physical laws, there exist systems which are not describable in 
terms of these laws. The denial of Hypothesis I asserts in effect 
that physics is essentially incomplete, in a sense far stronger 
than the GSdel-incompleteness of arithmetic. An arithmetic analog 
of this type of incompleteness would entail the existence of some 
arithmetic proposition which does not follow from any other propo- 
sition or set of propositions which are mutually consistent. 

If it is assumed a priori that Hypothesis I is false, we see that 
the physical form of Church's Thesis becomes undecidable. If we 
are given a calculating agent / for which no description can be 
found, there is no means of determining whether the associated 
numerical  function f is Turing-computable or not.     For example, 
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under the hypothesis that the radioactive decay of an atomic nu- 
cleus is essentially undesctibable, we might be able to construct 
a true computing agent for which it is impossible to decide whether 
or not its associated numerical function is Turing-computable or 
not. 

If Hypothesis II alone is .denied a priori, then we can still for- 
mally reach the conclusion that the physical form of Church's The- 
sis is a true statement by following the argument of the preceding 
section. However, in these circumstances such an argument is no 
longer effective, in a logical sense. 

It is at any rate clear that, if it should be the case that Church's 
Thesis is false as a physical assertion, then Hypotheses I and // 
cannot both be correct. While our purpose has been primarily to 
show how the Thesis is related to the laws of physics, with the 
goal of ultimately obtaining a possible characterization of realiza- 
bility, and not to investigate the validity of Hypotheses I and // as 
foundations for theoretical physics, we might point out that there 
is no real analog in physics of the long list of unproved proposi- 
tions in elementary number theory, which resisted all attempts at 
proof for so long that it at last became plausible to investigate the 
possibility that some of them were actually unprovable. 

One final possible biophysical implication of our discussion may 
be mentioned. If the rational properties of the mind are regarded 
as a manifestation of a complicated physical system which is 
capable of functioning as a calculating agent, then it follows that 
every calculating scheme which the mind can devise can, if 
Church's Thesis in its physical form is correct, be carried out by a 
Turing machine. Furthermore, since every scheme for effectively 
calculating the values of a numerical function is an outcome of a 
mental effort, we may very well come close to providing a proof of 
the Church Thesis in its original form. 

The author is indebted to Professor N. Rashevsky, Professor 
G. Y. Rainich, and Professor Patrick Suppes for valuable discus- 
sions concerning the subject matter of the above research. 
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